1) Use the Limit Definition of a derivative to find f'(x) if $f(x) = x^2 + x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2) Use the Limit Definition of a derivative to find f'(x) if $f(x) = 2x^2 + 7$

3) Use the Limit Definition of a derivative to find f'(x) if $f(x) = x^2 + 2x + 4$

4) Use the Alternative Definition of a derivative to find f'(2) if if $f(x) = x^2 + 3x - 7$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$

5) Use the Alternative Definition of a derivative to find f'(2) if if $f(x) = 2x^2 + 4x$

6) Use the Alternative Definition of a derivative to find f'(2) if if $f(x) = 7 - 5x^2$

7) Use the Limit Definition of a derivative to find f'(2) if if $f(x) = 2x^2 + 2x + 4$

8) Use the Limit Definition of a Derivative to find f'(x) if $f(x) = \sqrt{2x-1}$

9) Use the Limit Definition of a derivative to find f'(x) if $f(x) = \frac{2}{5-x}$

10) Use the Alternative Definition of a derivative to find f'(2) if $f(x) = \sqrt{3-x}$

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

11) Use the Alternative Definition of a derivative to find f'(2) if $f(x) = \frac{3}{x+2}$

12) Find the equation of the tangent line to $f(x) = 2 - 3x^2$ at x = -1

13) Find the equation of the tangent line to $f(x) = \frac{x+1}{x+4}$ at x=2